Science Menu
BSc Minor in Computing Science
Students can complete a minor in computing science by completing the following courses: MATH 1700, COMP 1130, 1230, 2230, and 18 upper level (3000-4000 level) credits (6 courses).
Program structure and requirements
MATH 1700 Discrete Mathematics 1 (3,1.5,0) MATH 1700 Discrete Mathematics 1 (3,1.5,0)Credits: 3 credits This course is an introduction to the foundation of modern mathematics including basic set theory; solution to recurrence relations; logic and quantifiers; properties of integers; mathematical induction; introduction to graphs and trees; Boolean algebra and finite state machines. Students will apply the critical thinking skills developed in Mathematics to derive meaning from complex problems.
Prerequisites: Pre-calculus 12 (min grade C+) or Foundations of Math 12 (min grade C+) or MATH 0600 (min grade B) or MATH 0610 (min grade C-) or MATH 0630 (min grade C-) or MATH 0633 (min grade C-) or MATH 0650 (min grade C-)
|
COMP 1130 Computer Programming 1 (3,1,1) COMP 1130 Computer Programming 1 (3,1,1)Credits: 3 credits Students are introduced to the use of structured problem solving methods, algorithms, structured programming, and object-oriented programming concepts. Students use a high level programming language to learn how to design, develop, and document well-structured programs using software engineering principles. Students learn the workings of a computer as part of programming. This course is for students who plan to take further courses in Computing Science or to learn basic programming concepts.
Notes:
1. Students with previous programming experience (if-else, loops, arrays) in a language other than Java, should take COMP 1230 or COMP 2120
2. Students may not receive credit for more than one of COMP 1130, COMP 1131 and COMP 1520 |
COMP 1230 Computer Programming 2 (3,1,0) COMP 1230 Computer Programming 2 (3,1,0)Credits: 3 credits This course is a continuation of COMP 1130 and provides a foundation for further studies in computing science. The objectives are to introduce object oriented programming and continue to develop a disciplined approach to the design, coding and testing of programs. In a laboratory setting, through critical thinking and investigation, students will iteratively design and build a variety of applications to reinforce learning and develop real world competency in Computer. This course is for students who plan to take further courses in Computing Science or to learn basic Object Oriented programming concepts.
|
COMP 2230 Data Structure, Algorithm Analysis, and Program Design (3,1,0) COMP 2230 Data Structure, Algorithm Analysis, and Program Design (3,1,0)Credits: 3 credits Students are introduced to the basic methods of representing data in Computing Science. Students review, implement and analyze several fundamental data structures including lists, stacks, queues, and graphs. Students learn the implementation of algorithms using these data structures and the efficiency and cost tradeoffs of each of them.
|
COMP XXXX 3000-4000 Level Computing Elective |
COMP XXXX 3000-4000 Level Computing Elective |
COMP XXXX 3000-4000 Level Computing Elective |
COMP XXXX 3000-4000 Level Computing Elective |
COMP XXXX 3000-4000 Level Computing Elective |
COMP XXXX 3000-4000 Level Computing Elective |